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Abstract: We propose a sparse estimation method, termed MIC (Minimum ap-

proximated Information Criterion), for generalized linear models (GLM) in fixed

dimensions. What is essentially involved in MIC is the approximation of the `0-

norm by a continuous unit dent function. A reparameterization step is devised to

enforce sparsity in parameter estimates while maintaining the smoothness of the

objective function. MIC yields superior performance in sparse estimation by opti-

mizing the approximated information criterion without reducing the search space

and is computationally advantageous since no selection of tuning parameters is

required. Moreover, the reparameterization tactic leads to valid significance test-

ing results free of post-selection inference. We explore the asymptotic properties

of MIC, and illustrate its usage with simulated experiments and empirical exam-

ples.
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sparse estimation, regularization, variable selection.

1. Introduction

Suppose that data L := {(yi,xi) : i = 1, . . . , n} consist of n i.i.d. copies

of {y,x}, where y is the response variable and x = (x1, . . . , xp)
T ∈ Rp

is the predictor vector. WLOG, we assume that the xij’s are standard-

ized throughout the paper. Consider the regression models that link the

mean response y and covariates x through its linear predictor xTβ with

β = (β1, . . . , βp)
T , e.g., generalized linear models (GLM; McCullagh and

Nelder (1989)). Concerning variable selection, the true β can be sparse

with some components being zeros. Sparse estimation aims to identify the

zero components and estimate the nonzero ones in β simultaneously. For

simplicity, we assume that either there is no nuisance parameter involved,

or that the nuisance parameters (e.g., scale or variance) and β are orthog-

onal (Cox and Reid (1987)). Hence we denote the log-likelihood function

as L(β) =
∑n

i=1 log f(yi,xi;β), where f(y,x;β) denotes the probability

density function of (y,x).

Common variable selection methods can be formulated as the optimiza-

tion problem

min
β ∈Ω

− 2 · L(β) + λ

p∑
j=1

ρ(βj), (1.1)

where ρ(·) ≥ 0 denotes a penalty function applied to each individual com-
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ponent of β, λ ≥ 0 is the penalty parameter, and Ω = Rp is the search

space or parameter space for β. Methods vary in the form of the penalty

function and the way of determining the penalty parameter. In the classical

best subset selection (BSS), the `0 norm penalty, or cardinality of β,

p∑
j=1

ρ(βj) = ‖β‖0= card(β), (1.2)

provides a measure of model complexity with the number of nonzero com-

ponents in β; the penalty parameter λ0 is fixed as 2 in AIC (Akaike (1974))

or ln(n) in BIC (Schwarz (1978)). We focus more on the use of BIC for its

superior empirical performance in variable selection, widely reported in the

literature. BSS essentially seeks the best model with minimum BIC. Owing

to the discrete nature of the `0 norm, the optimization is done in two steps:

one maximizes the log-likelihood L(β) for each given sparsity structure or

model (2p in total), then compares across all models. BSS is only feasi-

ble for small p, despite the availability of faster algorithms (Furnival and

Wilson (1974)).

The second general approach to variable selection is regularization. One

basic motivation of regularization is to change the discrete nature of BSS.

For this purpose, different continuous penalty functions are proposed. In

scenarios where the log-likelihood function is concave, or can be converted

so, the `1 penalty ‖ β ‖1=
∑p

j=1 |βj| in LASSO (Tibshirani (1996)) helps
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retain convexity of the optimization problem. LASSO requires strong as-

sumptions in order to ensure selection consistency (Zhao and Yu (2006))

and induces bias in estimating the nonzero parameters. To make improve-

ments, non-convex penalties such as SCAD (Fan and Li (2001)) and MCP

(Zhang (2010)) are proposed.

There are several difficulties with regularization. To induce sparsity

in the estimated parameters, it is necessary for β = 0 to be a singular

point of ρ(β); this makes the optimization in (1.1) non-smooth. Many

well-developed smooth optimization routines cannot be used for this and

new ones have to be sought. While efficient algorithms such as homotopy

(Osborne, Presnell, and Turlach (2000)), the LARS method (Efron et al.

(2004)), and coordinate descent (Fu (1998), Friedman, Hastie, and Tibshi-

rani (2010), and Breheny and Huang (2011)) have become standard, it is of

both methodological and practical interest to see if sparse estimation can

be formulated into a smooth optimization problem. Besides, the penalty in

regularization no longer corresponds well to model complexity represented

by ‖ β ‖0. Hence there is no simple rule, as in BIC, for determining the

penalty parameter λ and its choice has to be tuned. This leads to the two-

step procedure in the practice of regularization: compute the regularization

path {β̂(λ) : λ ≥ 0}, then select the best tuning parameter λ? by referring
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to a criterion such as BIC (see, e.g., Wang, Li, and Tsai (2007)). Thus,

regularization seeks minimum BIC from a much reduced search space, not-

ing that the regularization path is a one-dimensional curve in Ω. Selecting

λ? not only consumes additional computational time, but also causes an-

other statistically awkward issue concerning its inference. Although the

best tuning parameter λ̂ is data-dependent and hence clearly a statistic,

no statistical inference is routinely done on λ, at least in the frequentist’s

approach.

Another problem with both BSS and regularization is the post-selection

inference. Conventionally statistical inference is made on the final model

with selected variables or nonzero coefficients by ignoring the effect of model

selection. This can be problematic, as pointed out by Leeb and Pötscher

(2005) and others. One obstacle is that no statistical inference is available

for parameters associated with unselected variables in BSS or zero esti-

mates in regularization. How to make valid post-selection inference has

been considered in Berk et al. (2013), Efron (2014), and Lockhart et al.

(2014).

In this article, we study a sparse estimation method for GLM, termed

the Minimum approximated Information Criterion (MIC), first proposed

by Su (2015) in linear regression. The exposition in Su (2015) focuses on
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variable selection only; we expand the use of MIC in sparse estimation. The

main idea of MIC is to introduce unit dent functions to approximate the `0

norm in (1.2). This leads to a smoothed version of BIC that can be directly

optimized. A reparameterization step is then devised to enforce sparsity in

parameter estimates while maintaining smoothness of the objective func-

tion. The formulation results in a non-convex yet smooth programming

problem, and many readily available smooth optimization algorithms can

be conveniently applied. Moreover, the smoothness of the estimating equa-

tion provides leeway in circumventing post-selection inference.

MIC offers several major advantages in sparse estimation. It imitates

BSS but extends its capacity to large p. Since MIC seeks optimization

of BIC, albeit approximated, without reducing the search space, it out-

performs many regularization methods in the sense of minimum BIC. It

is computationally advantageous in avoiding selection of the tuning pa-

rameters, and facilitates statistical inference for both zero and non-zero

coefficient estimates via the reparameterization trick. Our discussions are

restricted to fixed dimensions. The remainder of this article is organized

as follows. Section 2 presents the MIC method in detail. In Section 3, we

explore its asymptotic properties. Section 4 presents simulation studies and

data analysis examples. Section 5 concludes with a brief discussion.
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2. Minimizing the Approximated BIC

MIC approximates cardinality in the information criteria with a smooth

unit dent function and enforces sparsity with reparameterization. In the

final form, it solves the unconstrained smooth optimization problem

min
γ

− 2L(β) + log(n) · tr(W), (2.1)

where β = Wγ, and W = diag (wj) with wj = w(γj) = tanh(a γ2
j ) for

j = 1, . . . , p. The formulation of (2.1) involves a nonnegative parameters a

that controls the sharpness of approximation. The empirical performance

of MIC is rather stable with respect to the choice of a, hence a is fixed

a priori. We explain the detailed procedure step-by-step in the ensuing

subsections.

2.1 Unit Dent Functions

In a similar spirit to regularization, we desire to make the discrete

BSS process continuous. While most regularization methods are based on

optimization considerations, e.g., convex relaxation of the `0 norm, MIC

is mainly motivated by the idea of approximation. Specifically, we seek a

continuous or smooth approximation to the cardinality in (1.2).

For convenience, we use β as a generic notation for βj from time to time.

Since the cardinality of β is ‖β‖0=
∑
I{βj 6= 0}, we need to approximate
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the indicator function I{β 6= 0}. To this end, a suitable approximating

function w(β) must be a unit dent function.

Definition 1. Let R̄ = R∪{−∞,∞}. A unit dent function is a continuous

even function w : R̄ → [0, 1] that is increasing on R+ with w(0) = 0 and

limβ→∞w(β) = 1.

If w(β) is differentiable, then ẇ(β) ≥ 0 on R+ and ẇ(β) ≤ 0 on R−. The

[0, 1] range requirement ensures that
∑

j w(βj) approximates ‖β ‖0, but it

makes w(·) non-convex. The condition lim|β|→∞w(β) = 1 implies that w(β)

is approximately a constant function or ẇ(β) ≈ 0 when |β| is away from 0.

As a consequence, the penalty w(β) essentially does not alter the related

score equations for nonzero β. Motivated by bump functions, we call w(·)

a ‘dent’ function. A special family of bump functions, called mollifiers, are

known as smooth approximations to the identity (Friedrichs (1944)). For

a mollifier φ(·) normalized to have the range [0, 1], 1 − φ(·) is a unit dent

function.

Let D denote the family of all unit dent functions. It is easy to see that

D is closed under operations such as composition and product. In partic-

ular, if w(β) ∈ D, then wk(β) ∈ D for k ∈ N. Unit dent functions have

appeared in the regularization literature, one being the truncated `r penalty

of Shen, Pan, and Zhu (2012). The penalty functions SCAD (Fan and Li
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(2001)) and MCP (Zhang (2010)) can also be modified into unit dent func-

tions. See Figure 1 for graphical illustrations of several unit dent functions:

(a) truncated Lr: w(β; a, r) = (|β|/a)r if |β| ≤ a and 1 otherwise; (b) modi-

fied SCAD: w(β; a) = a|β| if |β| ≤ a; {2a(2−a2)|β|−a4−a2β2}/{4(1−a2)}

if a < |β| < (2−a2)/a; and 1 if |β| > (2−a2)/a for 0 < a <
√

2/3; (c) modi-

fied MCP: w(β; a) = a|β|−a2β2/4 if |β| ≤ 2/a and 1 if |β| > 2/a for 0 < a <

√
2; (d) hyperbolic tangent w(β; a) = tanh(a · β2); (e) weight elimination

(Weigend, Rumelhart, and Huberman (1991)) w(β) = (1 + a/β2)−1 with

a > 0; (f) converse mollifier w(β) = 1 − exp {−β2/(a2 − β2)} · I {|β| ≤ a}

for a > 0.

To enforce sparsity, the penalty function must have β = 0 as a singular

point (Fan and Li (2001)). However, MIC advocates the use of smooth unit

dent functions since the smoothness property allows us to capitalize on well-

developed theories and methods in optimization and statistical inference.

We achieve sparsity in a different way.

While many smooth unit dent functions can be considered, we use the

hyperbolic tangent function in MIC for its simple form:

w(β) = tanh(aβ2) =
exp(2aβ2)− 1

exp(2aβ2) + 1
= 2 logistic(2aβ2)− 1. (2.2)

Its derivatives are easily available, with the first two given by ẇ(β) = 2aβ(1−

w2) and ẅ(β) = 2a(1−w2)(1− 4aβ2w). In addition, the tanh(·) function
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is associated with the logistic or expit function that is widely used in statis-

tics. A plot of w(β) versus β for different a values is provided in Figure

1(d). It can be seen that a larger a yields a sharper approximation to the

indicator function I{β 6= 0}.

With w(β) = tanh(aβ2), one seeks to solve

min
β

− 2 · L(β) + λ0 ·
p∑
j=1

w(βj). (2.3)

Expanding L(β) at the MLE β̂ and using the fact that ∇L(β̂) = 0, we

have

L(β) ≈ L(β̂) + (β − β̂)T
{
∇2L(β̂)/2

}
(β − β̂),

where ∇L(β̂) and ∇2L(β̂) are the gradient vector and Hessian matrix of

L(β) evaluated at β̂, respectively. Thus, the penalized optimization form in

(2.3) can be viewed as the Lagrangian that corresponds to the constrained

optimization problem

min
β

(β − β̂)T
{
−∇2L(β̂)

}
(β − β̂) subject to

p∑
j=1

w(βj) ≤ t0, (2.4)

for some t0 ≥ 0. Figure 2(a) presents a graphical illustration of the opti-

mization problem (2.4) in the two-dimensional case. The objective function

is an ellipsoid centered at MLE β̂. As shown as the contour plots of Fig-

ure 2(a), the feasible sets for the constraint w(β1) + w(β2) ≤ t0 contain

both sharpened diamonds for large t0 and discs for small t0, resembling the
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grouped LASSO penalty (Bakin (1999)) as pointed out by a referee. By the

Taylor expansion, w(β) = aβ2 + O(β6) for β → 0, implying that sparsity

may not be enforced. We address this issue in the next section. Hereafter,

w(β) is referred to the hyperbolic tangent penalty, unless otherwise stated.

2.2 Reparameterization

To enforce sparsity, we consider a reparameterization procedure orig-

inally motivated by the nonnegative garrotte (NG) of Breiman (1995).

NG is a sign-constrained regularization based on the decomposition β =

sgn(β) |β|. Supposing that the sign of each βj can be correctly speci-

fied by the MLE β̂, it remains to estimate |βj|. Reparameterizing β =

diag{sgn(β̂)}γ, for some nonnegative vector γ such that γj = |βj|, leads to

the NG formulation

min
γ
−2L(β) s.t.

p∑
j=1

γj ≤ t and γj ≥ 0

with tuning parameter t. A fundamental problem with sign-constrained reg-

ularization is that if any sign is wrongly specified by the initial estimator β̂,

which occurs often in data owing to multicollinearity or other complexities,

then it cannot make a correction.

Our immediate aim is to introduce singularity to the penalty function

at 0. For this purpose, we consider the decomposition β = β I{β 6= 0}.

Statistica Sinica: Preprint 
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Set γ = β and approximate I{γ 6= 0} by w(γ). This motivates the repa-

rameterization βj = γjw(γj) for j = 1, . . . , p. In matrix form, β = Wγ,

where matrix W is defined in (2.1). As shown in Figure 2(c), β is a strictly

increasing function of γ and β = γ except for a small neighborhood of 0, in

which a shrinkage on |β| is imposed.

To see how the reparameterization helps enforce sparsity, consider the

resulting optimization problem

min
β

− 2 · L(β) + ln(n) ·
p∑
j=1

w(γj). (2.5)

Compared to (2.3), the only change is that the penalty function w(·) is now

applied to the reparameterized γj instead of βj. The w(γj) in (2.5) is an

implicit function of βj. Figure 2(d) plots w(γ) as a penalty function of β

for different values of a, which shows a similar pattern to the non-convex

SCAD or MCP penalty with a cusp at β = 0. It can be verified that w(γ)

is a unit dent function of β that approximates I(β 6= 0).

The singularity at 0 can be further confirmed by calculating the deriva-

tives of w(γ) at β. Applying the chain rule gives

dw(γ)

d β
=
dw(γ)

d γ
· d γ
d β

=
dw(γ)

d γ
·
(
d β

d γ

)−1

=
ẇ

w + γẇ
, (2.6)

where w = w(γ) and ẇ = ẇ(γ) = 2aγ(1 − w2), and it follows d β/d γ =

w + γẇ. The first derivative in (2.6) is expressed in terms of γ via implicit
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differentiation since the explicit formula of γ in terms of β is unavailable.

The validity of (2.6), however, requires d β/d γ 6= 0, which holds every-

where except at β = 0. Similar arguments can be used to derive the form

of higher-order derivatives. For example, the second-derivative is given by

d2 w(γ)

d β2 =
w ẅ − 2 ẇ2

(w + γẇ)3

with ẅ = ẅ(γ) = 2a(1 − w2)(1 − 4aγ2w), which again does not exist at

β = 0. It can be verified that w(γ) is a smooth function of β except at

β = 0.

The reparameterization β = γw(γ) to enforce singularity at 0 holds

for any smooth function in D. We have utilized the differentiation of the

inverse function to achieve this. Accordingly, the derivatives of w(γ) as a

function of β exist everywhere except at β = 0.

Figure 2(b) provides a two-dimensional illustration of the constrained

optimization problem that corresponds to (2.5):

min
β

(β−β̂)T
{
−∇2L(β̂)

}
(β−β̂) s.t. tr(W) ≤ t0 with β = Wγ. (2.7)

The contour lines of the constraint w(γ1) + w(γ2) ≤ t (as a function of

β1 and β2) are sharpened diamonds, which serve better for the variable

selection purpose.

The smooth formulation facilitated by reparameterization allows us to
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utilize available results in optimization theory and statistical inference, and

leads to some important advantages. For computation, we estimate γ in-

stead by solving (2.1). Compared to (2.5) where the objective function is

nonsmooth in β, we have switched the decision vector to γ. Solving (2.1)

is a smooth optimization problem and many standard algorithms apply.

Estimation of γ is meaningful in its own right. The fact that the corre-

spondence between β and γ is one-to-one with βj = 0 iff γj = 0 allows us

to derive significance testing for β through γ that is free of post-selection

inference. The objective function in (2.1) is smooth for estimating γ. Thus

standard arguments in M-estimators can be applied for making inference

on γ. The procedure is given next.

3. Asymptotic Properties

In this section, we study the asymptotic oracle properties of the MIC

estimator β̃, including its
√
n-consistency, selection consistency, and the

asymptotic normality of its nonzero components. We then present signifi-

cance testing on β via γ that is free of post-selection inference. The proofs

are in the supplementary materials.

3.1 Oracle Properties of the MIC Estimator β̃

We consider the MIC estimator β̃ obtained by minimizing the objective
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function in (2.5),

Qn(β) = −2
L(β)

n
+

ln(n)

n

p∑
j=1

w(γj), (3.1)

where L(β) =
∑n

i=1 li(β) with li(β) = log f(Xi, Yi;β). We denote a as an

so that βj = γjw(γj) = γj tanh(anβ
2
j ), and assume an = O(n); this rate for

an will be manifested in the derivation.

Denote the true parameter as β0 = (βT0(1),β
T
0(0))

T , where β0(1) ∈ Rq

consists of all q nonzero components and β0(0) = 0 consists of all the (p −

q) zero components. For simplicity, we use β̃ and β̂ to denote the MIC

and MLE estimators, respectively. Let I = I(β0) and I1 be the Fisher

information matrix for the whole and reduced true model with β0(0) = 0,

respectively. It is well known that I1 is the q-th principal submatrix of I.

Theorem 1. Let {(Xi, Yi) : i = 1, . . . , n} be n i.i.d. copies from a density

f(X, Y ;β0). Under the regularity conditions (A)–(C) in Fan and Li (2001),

we have

(i). (
√
n-Consistency) there exists a local minimizer β̃ of Qn(β) that is

√
n-consistent for β0 in the sense that ‖ β̃ − β0 ‖= Op(n

−1/2).

(ii). (Sparsity and Asymptotic Normality) Partition β̃ in (i) as (β̃
T

(1), β̃
T

(0))
T

in a similar manner to β0. With probability tending to 1 as n→∞,

β̃(0) = 0 and
√
n(β̃(1) − β0(1)) → N

(
0, I−1

1

)
.
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The results in Theorem 1 are analogous to Theorems 1 and 2 in Fan

and Li (2001). It establishes that β̃(0) is selection consistent and β̃(1) is a

best asymptotic normal (BAN; see, e.g., Serfling (1980)) estimator of β0(1).

The standard errors (SE) for nonzero components in β̃ can be computed by

replacing I1 in Theorem 1(ii) with the observed Fisher information matrix

(Efron and Hinkley (1978)) and plugging in β̃. Since β̃ is essentially an M-

estimator, alternative sandwich SE formulas (Stefanski and Boos (2002))

are available. However, as part of the post-selection inferences, all these SE

formulas are only available for nonzero components in β̃ and hence caution

should be exercised.

3.2 Inference on β via γ

MIC completes sparse estimation in a single optimization step. This

brings about a unique opportunity to address the fundamental post-selection

inference problem. Inference on zero components in β is unavailable in MIC

because the asymptotic normality of M-estimators often entails a condition

that the expected objective function E{Qn(β)} admits a second-order Tay-

lor expansion at β0 whereas sparsity requires singularity of the penalty

function w(γ) at β = 0. However, the reparameterisation helps us to cir-

cumvent this non-smoothness issue. The transformation β = γw(γ) is a

bijection and β = 0 iff γ = 0. Hence testing H0 : βj = 0 is equivalent
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to testing H0 : γj = 0. As the objective function of γ, Qn(γ) in (3.1) is

smooth in γ. Therefore, the statistical properties of γ̃ are readily available

following standard M-estimation arguments.

Theorem 2. If γ0 is the reparameterized parameter vector associated with

β0 such that β0j = γ0jw(γ0j), then

‖γ0 − β0 ‖2= O{exp(−2an min
1≤j≤q

γ2
0j)}.

Under the regularity conditions (A)–(C) in Fan and Li (2001), we have

√
n [D(γ0)(γ̃ − γ0) + bn]

d−→ N
{
0, I−1(β0)

}
. (3.2)

where

D(γ0) = diag(wj + γjẇj)|γ=γ0
= diag (Djj) (3.3)

and the asymptotic bias

bn =
{
−∇2L(β0)

}−1 ln(n)

2

(
ẇj

wj + γ̃jẇj

)p
j=1

= (bnj)
p
j=1 (3.4)

satisfies (i) limn→∞Djj = I{β0j 6= 0} and (ii) bn = op(1).

A practical implication of Theorem 2 is that both D(γ0) and bn may

be ignored in computing the standard errors of γ̃. Furthermore, since ‖

γ̃ −β0 ‖≤‖ γ̃ −γ0 ‖ + ‖γ0−β0 ‖= op(1), γ̃ is a consistent estimator of β0

and can be used to replace β0 in estimating the Fisher information matrix.
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Thus, an asymptotic (1− α)× 100% confidence interval for γ0j is

γ̃j ± z1−α/2

√
(I−1
n (γ̃)/n)jj, (3.5)

where In denotes the observed Fisher information matrix and z1−α/2 is the

(1 − α/2)-th percentile of N(0, 1). Significance testing on γ0j can be done

accordingly.

4. Numerical Results

In this section, we present simulation experiments and data examples

to illustrate MIC in comparison with other methods.

4.1 Computational Issues

MIC solves for γ̃ by optimizing (2.1). Considering its nonconvex nature,

a global optimization method is desirable. Mullen (2014) provides a com-

prehensive comparison of global optimization algorithms currently available

in R (R Core Team (2017)). According to her recommendations, we have

chosen the GenSA package (Xiang et al. (2013)) that implements the gen-

eralized simulation annealing of Tsallis and Stariolo (1996), because of its

superior performance in both identification of the true optimal point and

computing speed. With estimated γ̃, the MIC estimator β̃ can be obtained

via the transformation β̃ = W̃γ̃, where W̃ = diag(w̃j) with w̃j = w(γ̃j).

Because of the shrinkage effect of the reparameterization around 0, esti-
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mates γ̃j close to 0 yield small values of |β̃j|, which can be virtually taken

as 0.

Implementation of MIC involves the choice of a or an. In theory, the

asymptotic results in Section 3.1 entail an = O(n). To apply the arguments

of Fan and Li (2001), this O(n) rate seems unique. In practice, the empirical

performance of MIC is quite stable with respect to the choice of an, as

demonstrated in Su (2015) for linear regression. In MIC, an is a shape or

scale parameter in the unit dent function that modifies the sharpness of

its approximation to the indicator function. Its role is largely similar to

that of the parameter a in SCAD (Fan and Li (2001)), where a is fixed

at a = 3.7. In general, a larger an enforces a better approximation of the

indicator function with the hyperbolic tangent function, while a smaller an

is appealing for optimization purposes, by introducing more smoothness.

Based on our numerical experience, applying an an value smaller than 1

is not advisable owing to poor approximation. The performance of MIC

stabilizes substantially when an gets large, especially when it is 10 or above.

On this basis, we recommend fixing a to any value in [10, 50].

Four known methods are included for comparison with MIC: the best

subset selection (BSS) with BIC, LASSO, SCAD, and MCP. The oracle

estimate is added as a benchmark. All the computations are done in R
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(R Core Team (2017)). Specifically, we have used the R package bestglm

for BSS, lars and glmnet for LASSO, and ncvreg and SIS for SCAD and

MCP, with their default settings.

4.2 Simulated Experiments

We generated data sets by using the simulation settings of Zou and Li

(2008). The models are
Model A: y|x ∼ N{µ(x), 1} with µ(x) = xTβ,

Model B: y|x ∼ Bernoulli{µ(x)} with µ(x) = expit(xTβ),

Model C: y|x ∼ Poisson {µ(x)} with µ(x) = exp(xTβ),

(4.1)

where β = (3, 1.5, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0)T in Models A and B, and (1.2, .6, 0,

0, .8, 0, 0, 0, 0, 0, 0, 0)T in Model C. Each data set involves p = 12 predictors

that follow a multivariate normal distribution N(0, Σ) with Σ = (σjj′) and

σjj′ = 0.5|j−j
′| for j, j′ = 1, . . . , p. In Model B, six binary predictors are

created by setting x2j−1 := I{x2j−1 < 0} for j = 1, . . . , 6. Thus, there are

six continuous and six binary predictors in Model B. We consider sample

sizes n = 100 and n = 200, and 500 simulation runs were taken for each

model configuration.

To apply the MIC method, we fixed λ0 = ln(n) and an = 10. Five

performance measures were used for comparison. The first is the empirical

model error (ME),
∑n

i=1(µi − µ̂i)2/n, where µi is given in (4.1) and µ̂i is
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obtained by plugging in the estimate of β. We computed ME based on

an independent test sample of size n = 500 and report the averaged ME

over 500 realizations. The other measures were the average model Size,

the number of nonzero parameter estimates; FP, the number of nonzero

estimates for zero parameters; FN, the number of zero estimates for nonzero

parameters; and the proportion of correct selections, C.

Table 1 indicates that MIC performs similarly to BSS across all three

models. All performance measures of MIC improve as the sample size in-

creases. By comparing MIC against the other regularization methods, we

find that MIC outperforms them in general, except for the Gaussian linear

regression case where its performance is only comparable. We think this is

mainly because the objective function of MIC involves the Gaussian profile

likelihood n ln ‖ y−Xβ ‖2, which is nonconvex, while regularization meth-

ods can work with the convex least squares problem ‖ y −Xβ ‖2 directly.

Nevertheless, they all have to deal with the same log-likelihood function in

Models B and C. No implementation of MCP is available for the log-linear

regression, hence it is not presented for Model C. In sum, MIC not only

enjoys computational efficiency, but also demonstrates an excellent finite

sample performance.

We evaluated the standard error formula for nonzero parameter esti-
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mates. Table 2 presents the median absolute deviation (MAD) value of

β̃(1) out of 500 runs, which provides a more robust estimate of its standard

deviation. This MAD value matches reasonably well with the median of

standard errors of β̃(1). Also presented is the MAD of standard errors. Ta-

ble 3 presents the empirical size and power results in testing H0 : γj = 0 at

the significance level α = 0.05, together with the coverage of 95% confidence

intervals, over 1,000 simulation runs. The coverage proportion of 95% con-

fidence intervals is presented only for each nonzero estimate; the coverage

for a zero-valued γj estimate equals 1 minus the empirical size in this case

and hence has been omitted. Sample sizes n ∈ {50, 200} were considered.

It can be seen that the proposed testing procedure has empirical sizes close

to the nominal level 0.05 while showing exceptional empirical powers and

coverage probabilities.

4.3 Data Examples

We consider the diabetes data (Efron et al. (2004)), the heart data

(Hastie, Tisshirani, and Friedman (2009)), and the fish count data (avail-

able from http://www.ats.ucla.edu/stat/data/fish.csv) to illustrate

linear regression, logistic regression, and log-linear regression models, re-

spectively. The results are presented in Table 4, where the p-values in MIC

are based on testing H0 : γj = 0.
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Table 4 shows that MIC provides the similar selection as the BIC-based

best subset selection across all three examples. In addition, the resulting

MIC estimates and their standard errors are quite close to these of the

BIC model, indicating that MIC approximates the best subset selection

method well. This, together with MIC’s computational efficacy, allows us

to employ MIC on data with large numbers of covariates, even when BSS

is infeasible. In the diabetes data, it is interesting that the sign of the

parameter estimate on hdl is positive under the full model fitting, but is

negative in the MIC model and others. This sign change could be prob-

lematic for sign-constrained methods such as NG (Breiman (1995)), but it

comes out naturally in MIC. Furthermore, MIC is computationally much

advantageous by design. See Table 1 in the Supplementary Materials for a

comparison study on computing time.

To illustrate the stability of MIC with respect to the value of a, we

obtained the MIC estimates for a ∈ {1, 5, 10, 15, . . . , 100} and plot them

in Figure 3. While there are some minor variations mainly owning to the

non-convex optimization nature, almost all the estimated coefficients are

quite steady in all three examples, suggesting that the MIC estimation is

robust to the choice of a.
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5. Discussion

MIC is the first method that does sparse estimation by explicitly ap-

proximating BIC. BIC is optimal in two aspects: it approximates the pos-

terior distribution of candidate models besides being selection-consistent.

This is why BIC has been used as an ultimate yardstick in many vari-

able selection and regularization methods. MIC extends the best subset

selection (BSS) to scenarios with large p by optimizing an approximated

BIC. Formulated as a smooth optimization problem, MIC is computation-

ally advantageous to the discrete-natured BSS and enjoys the additional

benefit in avoiding the post-selection inference. Moreover, the search space

in MIC remains to be the entire parameter space. This explains why we

expect MIC to outperform many regularization methods that have a much

reduced search space for the minimum BIC. By borrowing the knowledge of

the fixed penalty parameter for model complexity in BIC, MIC circumvents

the tuning parameter selection problem and hence is also computationally

advantageous to regularization methods.

The hyperbolic tangent function has been used to approximate the car-

dinality in MIC, but can be replaced by other unit dent functions. Since one

focus of this paper is on the variable selection consistency, we have adopted

BIC by taking λ0 = ln(n). If the aim is on the model selection efficiency or
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predictive accuracy, then we can adopt AIC by setting λ0 = 2. It can be

shown that the resulting MIC is selection-efficient by applying techniques

similar to those used in Zhang, Li, and Tsai (2010). In sum, we can obtain

variants of MIC by changing its penalty function w and penalty parameter

λ0 to meet practical needs.

To broaden the usefulness of MIC, we would like to generalize MIC by

accommodating grouped or structured sparsity (see, e.g., Huang, Breheny,

and Ma (2012)), and extend MIC to other complex model or dependence

structures, such as finite mixture models, longitudinal data, and structural

equation modelings (SEM). Similar ideas can be applied to approximate

the effective degrees of freedom as well. In these settings, MIC can be

particularly useful because the log-likelihood function is not concave and

having convex penalties does not help with the optimization problem. We

would like to also develop the MIC method for diverging p → ∞ with

p/n → 0 (Fan and Peng (2004)) and ultra-high dimensions with p � n

(Fan and Lv (2008)) by approximating the extended or generalized BIC as

pioneered by Chen and Chen (2008).

Supplementary Materials

In the Supplementary Materials, we outline the proofs of Theorems

1 and 2 and we provide more details about an R package glmMIC that
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implements MIC, on which basis a comparison study on computing time is

also included.
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Figure 3: Illustrating the robustness of MIC with respect to the choice of

a in these examples. The values of a considered are {1, 5, 10, 15, . . . , 100}.
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Table 1: Simulation results on MIC (with λ0 = ln(n) and a = 10) in

comparison with other methods. Reported quantities include ME, Size,

FP, FN, and C, all based on 500 realizations.

(a) Model A – Linear Regression

n = 100 n = 200

Method ME Size FP FN C ME Size FP FN C

MIC 0.054 3.47 0.47 0.00 0.640 0.021 3.25 0.25 0.00 0.790

Oracle 0.034 3.00 0.00 0.00 1.000 0.015 3.00 0.00 0.00 1.000

BIC 0.055 3.35 0.35 0.00 0.710 0.022 3.19 0.19 0.00 0.834

LASSO 0.085 6.09 3.09 0.00 0.092 0.039 6.23 3.23 0.00 0.102

SCAD 0.045 3.58 0.58 0.00 0.752 0.022 3.71 0.71 0.00 0.752

MCP 0.047 3.57 0.57 0.00 0.750 0.020 3.41 0.41 0.00 0.814

(b) Model B – Logistic Regression

n = 100 n = 200

Method ME Size FP FN C ME Size FP FN C

MIC 0.017 3.74 1.03 0.29 0.354 0.005 3.42 0.49 0.07 0.624

Oracle 0.005 3.00 0.00 0.00 1.000 0.002 3.00 0.00 0.00 1.000

BIC 0.015 3.40 0.67 0.27 0.514 0.005 3.21 0.28 0.06 0.766

LASSO 0.023 6.54 3.79 0.25 0.012 0.012 7.32 4.37 0.05 0.018

SCAD 0.019 3.69 1.09 0.41 0.206 0.012 3.92 1.11 0.19 0.278

MCP 0.019 3.12 0.65 0.53 0.236 0.011 3.39 0.64 0.24 0.420

(c) Model C – Log-Linear Regression

n = 100 n = 200

Method ME Size FP FN C ME Size FP FN C

MIC 12.310 3.34 0.35 0.00 0.712 4.367 3.23 0.23 0.00 0.828

Oracle 9.289 3.00 0.00 0.00 1.000 3.555 3.00 0.00 0.00 1.000

BIC 25.884 3.39 0.39 0.00 0.714 4.897 3.23 0.23 0.00 0.826

LASSO 600.821 1.55 0.37 1.81 0.184 348.182 1.46 0.18 1.72 0.282

SCAD 40.753 4.08 1.08 0.00 0.336 12.843 3.64 0.64 0.00 0.528

MCP 80.931 3.48 0.59 0.11 0.698 18.979 3.50 0.56 0.05 0.745
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Table 2: Simulation results on standard errors of nonzero β̂ with n = 200

over 500 simulation runs. Reported quantities are MAD of the parameter

estimates, Median of the standard errors, and MAD of the standard errors.

(a) Model A – Gaussian Linear Regression

oracle MIC

MAD Median SE MAD SE MAD Median SE MAD SE

β1 0.083 0.082 0.006 0.083 0.082 0.006

β2 0.084 0.082 0.006 0.087 0.082 0.006

β5 0.072 0.072 0.005 0.073 0.072 0.005

(b) Model B – Logistic Regression

oracle MIC

MAD Median SE MAD SE MAD Median SE MAD SE

β1 0.528 0.475 0.086 0.529 0.492 0.094

β2 0.399 0.389 0.048 0.448 0.407 0.064

β5 0.380 0.356 0.059 0.405 0.367 0.061

(c) Model C – Loglinear Regression

oracle MIC

MAD Median SE MAD SE MAD Median SE MAD SE

β1 0.037 0.036 0.007 0.037 0.036 0.007

β2 0.039 0.039 0.007 0.040 0.039 0.007

β5 0.032 0.032 0.006 0.033 0.033 0.006
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Table 4: Illustration with real data examples.

(a) Linear Regression with Diabetes Data

Best Subset MIC

β̂j SE p-value? β̂j SE LASSO SCAD MCP

age 1.00

sex −0.15 0.04 0.00 −0.14 0.04 −0.12 −0.15 −0.14
bmi 0.32 0.04 0.00 0.33 0.04 0.32 0.32 0.33

map 0.20 0.04 0.00 0.20 0.04 0.18 0.20 0.20

tc 1.00 −0.06 −0.38
ldl 1.00 0.22 −0.07
hdl −0.18 0.04 0.01 −0.17 0.04 −0.14 −0.18
tch 1.00 0.08

ltg 0.29 0.04 0.00 0.29 0.04 0.32 0.43 0.30

glu 1.00 0.03 0.04 0.03

(b) Logistic Regression with Heart Data

Best Subset MIC

β̂j SE p-value? β̂j SE LASSO SCAD MCP

intercept −0.85 0.12 0.00 −0.84 0.12 −0.79 −0.85 −0.84
sbp 1.00 0.04 0.06

tobacco 0.37 0.12 0.00 0.35 0.12 0.30 0.37 0.37

ldl 0.35 0.11 0.00 0.33 0.11 0.27 0.35 0.37

famhist 0.46 0.11 0.00 0.45 0.11 0.37 0.46 0.46

obesity 1.00 −0.01 −0.09
alcohol 1.00

age 0.64 0.14 0.00 0.66 0.14 0.54 0.65 0.63

(c) Log-Linear Regression with Fish Data

Best Subset MIC

β̂j SE p-value? β̂j SE LASSO SCAD MCP

intercept −0.31 0.07 0.00 −0.30 0.07 0.36 −0.01
nofish 1.00 0.03

livebait 1.00

camper 1.00

persons 1.00

child −0.64 0.10 0.00 −0.64 0.10 −0.65 −0.65
xb 1.47 0.03 0.00 1.46 0.03 0.33 1.46 1.46

zg 0.60 0.07 0.00 0.60 0.07 0.60 0.60

xb:zg 1.00 0.18
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